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Abstract

Objectives This place-based, randomized experiment explored the impact of different patrol
strategies on violent and property crime in microscale predicted crime areas. The experiment
aimed to learnwhether different but operationally realistic police responses to crime forecasts,
estimated by a predictive policing software program, could reduce crime.
Methods Twenty Philadelphia city districts were randomized to three interventions and one
control condition. The three interventions comprised awareness districts (where officers were
made aware of predicted areas on roll-call), marked car districts (where amarked patrol police
car was dedicated to treatment areas), and unmarked car districts (a plain-clothes vehicle was
dedicated to treatment areas). A business-as-usual approach represented the control condition
in districts where staff had no access to the predictive software program. Two distinct 3-
month phases examined crime outcomes for property and violent crime, respectively.
Results The marked car treatment showed substantial benefits for property crime (31%
reduction in expected crime count), as well as temporal diffusion of benefits to the
subsequent 8-h period (40% reduction in expected crime count). No other intervention
demonstrated meaningful crime reduction. These reductions were probably not substantial
enough to impact city or district-wide property crime. Some violent crime results ran
contrary to expectations, but this happened in a context of extremely low crime counts in
predicted areas. The small grid size areas hampered achieving statistical power.
Conclusions The experiment found reductions in property crime resulting from the
marked car focused patrols. It also demonstrated the real-world challenges of estimating
and preventing crime in small areas.
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Introduction

Background

Predictive policing refers to analytical techniques identifying “likely targets for
police intervention” (Perry et al. 2013, p. xiii). The National Institute of Justice’s
first predictive policing symposium in Los Angeles in 2009 identified numerous
potential applications of predictive policing, the primary use being the “time and
location of future incidence in a crime pattern or series.”1 Another definition more
germane to street policing is therefore “the use of historical data to create a
spatiotemporal forecast of areas of criminality or crime hot spots that will be the
basis for police resource allocation decisions with the expectation that having
officers at the proposed place and time will deter or detect criminal activity”
(Ratcliffe 2014, p. 4).

The current study uses predictive policing to explore what geographic patrol
activities should be pursued in these priority areas. This is not just of relevance
to many police departments. It pertains as well to advancing our theoretical
understanding of predictive policing and a closely related concept, hot spots
policing.2 Hot spots policing is relevant because it continues to be the case that
“focused police resources on crime hot spots provided the strongest collective
evidence of police effectiveness that is now available” (National Research
Council 2004, p. 250).

Unfortunately, extant research is less clear on what specific activities police
officers should be doing in hot spots. Concepts such as the Koper Curve (Koper
1995) or strategies such as focused foot patrol (Ratcliffe et al. 2011) may only be
effective for long-term, chronic hot spots and prove ineffectual at addressing
dynamic day-to-day crime projections, like those often identified by modern algo-
rithms. If we consider predictive policing strategies are related to hot spots policing,
then two recent observations from Weisburd and Telep are relevant: (1) there are
numerous strategies that have not yet been rigorously tested, and (2) much more
needs to be learned about the impact of new technology on policing effectiveness
(Weisburd and Telep 2014).

In consideration of these observations, the current study reports on a randomized,
controlled field experiment in America’s sixth largest city, Philadelphia, Pennsylvania
(PA). After a predictive policing software algorithm (called HunchLab) generated
mission grids, the Philadelphia Police Department (PPD) tested three different patrol
responses over the course of two different experimental periods, each lasting 3 months.
The first experimental period applied the algorithm and patrol responses to property
crime, and the second to violence.

Our study reflects the practical reality of many police departments. The policing
intervention did not involve swamping predicted areas with massive amounts of
resources (saturation patrol) because such an option is unsustainable on an ongoing

1 http://www.nij.gov/topics/law-enforcement/strategies/predictive-policing/symposium/Pages/technical-
breakout.aspx
2 “Predictive policing…is hot-spot policing, significantly enhanced by technology” [Bill Bratton, NPR
interview (Around the Nation), November 26, 2011].
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basis for all but the largest police departments. Instead, we examined whether crime can
be reduced in predicted areas either through greater patrol awareness or with the
application of modest additional resources—a dedicated police car.

At present, “there is little experimental evidence from the field demonstrating
whether implementing an advanced analytics predictive model, along with a pre-
vention strategy…works to reduce crime” (Saunders et al. 2016, p. 348). The
motivating questions we explore are thus, (1) “can we predict crime at the
microgeographical level?” and, (2) “if we can predict crime, can we prevent crime
with these predictions?”

Where items are applicable, our article follows a CONSORT framework for the
reporting of randomized trials (Moher et al. 2010) and is organized as follows. This
introduction continues with the theoretical foundation and objectives of the exper-
iment. We then discuss the methods, including the trial design, study setting,
outcomes, and randomization process. Then we explain the statistical methods used
to determine the intervention impact, followed by a description of the most perti-
nent experimental results. Inevitably, with an experiment of this size and scope, we
lack sufficient space to describe every aspect of the work; therefore, a fuller
description of the experimental activity is in an online technical Appendix. A
discussion of the intervention’s limitations, generalizability, and implications for
policing completes the article.

Theoretical foundation

Our study stands at the intersection of two ideas relevant to modern policing: first, to
what extent the spatial distribution of crime is predictable; and second, whether
policing strategies can act on those predictions and deter criminal activity.

A substantial canon demonstrates that crime is unevenly distributed among
places and victims (Felson 1987; Sherman et al. 1989; Weisburd and Eck 2004),
and a number of spatial theories of crime can explain short-term changes in crime
risk for small areas (Chainey and Ratcliffe 2005). As Perry et al. (2013) point out,
the theoretical foundations allowing for crime prediction are ably supported by
routine activity theory (Cohen and Felson 1979), the rational choice perspective
(Cornish and Clarke 1986), and crime pattern theory (Brantingham and
Brantingham 1981–1982)—collectively known as opportunity theories.3 A perti-
nent empirical question, however, remains. How fluid are these patterns over the
short term?

The underlying theoretical platform for the HunchLab software, like so many spatial
prediction algorithms, is the reduced randomness in short-term crime event distribu-
tions. This is founded on evidence that offenders “forage” in nearby areas (Johnson
et al. 2009b), and this acts in conjunction with a generalized risk heterogeneity model
that highlights increased risk in certain areas (Johnson 2010; Tseloni and Pease 2003).
Gorr and Lee (2015) have suggested that short-term, temporary hot spots, which may
be identified by predictive policing methods, can be a more effective focus for crime
prevention than large chronic hot spots and provide for greater equity of crime

3 Perry et al. (2013) consolidated these approaches into what they called blended theory, but environmental
criminologists usually refer to these as the opportunity theories.
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reduction resources. Previous randomized studies examining policing in crime hot
spots, however, have relied on a year of crime prior to the experiment (Sherman and
Weisburd 1995) or even longer (Ratcliffe et al. 2011; Taylor et al. 2011) to identify hot
spot locations. Predictive policing approaches such as risk terrain modeling (Caplan
et al. 2011; Kennedy et al. 2011; Moreto et al. 2014) and techniques using short-term
event patterns (Johnson et al. 2009a; Mohler et al. 2011) have emerged over the last
decade or two with the promise of identifying short-term crime hot spots.

In the current study, we also employ a software program that generates a risk
surface for a forthcoming period. We stress, however, that estimating the efficacy of
the software program is not the primary goal of this study. Although we report the
capacity of the software to predict crime in the control sites, thereby allowing
readers to assess the context of the overall study, this is only a subsidiary goal.
Instead, the starting assumptions for the study were that (1) predictive software
exists, (2) it is capable of performing better than chance or against a uniform spatial
distribution of crime, and (3) police departments are as yet unclear as to the most
viable strategy to police predicted crime areas. We therefore focus on the policing
aspect, and in doing so, our research is a response to numerous calls for more
research in this area. For example, Sherman and colleagues’ comment of being
“unaware of any field experiments conducted with patrol dosage randomly assigned
to predictive policing hot spots” (Sherman et al. 2014, p. 108) and “Currently, the
policing aspect is mostly overlooked in evaluations of predictive policing”
(Rummens et al. 2017, p. 7).

A Campbell Collaboration review reported that 80% of police interventions
focused on crime hot spots “reported noteworthy crime and disorder reductions”
(Braga et al. 2012, p. 6). Many required significant resource commitments, such as
dedicated foot patrols of multiple officers for 16 h a day (Ratcliffe et al. 2011), or
sufficient directed patrol resources to “saturate” a crime hot spot (Taylor et al.
2011). This question of “dosage” appears important for crime prevention. Durlauf
and Nagin (2011, p. 17) show that certainty and severity of punishment is central
to deterrence theory and that “the empirical support for the deterrent effect of
certainty is far stronger than for severity.” Offender decision-making is likely
driven by a subjective assessment of the risk of apprehension, reinforced either
by the presence of visible police resources or specific exposure to arrest. Arrest
can reinforce “the capacity of the police to deter crime through the threat of
apprehension” (Lum and Nagin 2017, p. 344). Focusing police resources in a
small area, as can occur with predictive policing, is also relevant. Johnson et al.
(2009a, p. 177) determined that a spatial scale between meso and micro is
appropriate for patrolling choices and that at this scale “such patterns are over-
whelmingly a reflection of the activity of individual offenders.”

Choice of policing strategy ties not only to a theoretical foundation but also to
operational capacity. Crime analysis in Philadelphia has shown that while there are
chains of connected violent crime events, they have a short half-life. This requires
any police department to be extremely responsive if a predictive intervention is to
be successful (Haberman and Ratcliffe 2012; Ratcliffe and Rengert 2008; Wyant
et al. 2012). Haberman and Ratcliffe (2012) concluded that any organization
seeking to invest in predictive policing needs a proficient surveillance and analysis
mechanism to identify crime patterns, as well as a capable decision-making
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framework that supports operational flexibility. The latter theme appears in other
work (Johnson et al. 2009a). The current study explores this confluence of
deterrence and operational response. The application of patrol resources to pre-
dicted crime areas during the current study was grounded in a more sustainable
and realistic appreciation of the operational resource constraints confronting police
chiefs on a day-to-day basis.

Objectives

Can an operationally sustainable police response to predicted crime areas reduce crime?
The goal of our study is to investigate the crime reduction link between certain tactics
associated with predictive policing, guided by a prediction algorithm, and related
concepts of crime control grounded in theories of deterrence. We examine the effects
of policing on two different types of high-volume street offenses: violence and property
crime. Previous research has shown that street crime (Chainey et al. 2008) and property
crime patterns (Gorr et al. 2003) are more predictable than other types of crime.

The experiment tested a number of hypotheses related to the operational implemen-
tation of predictive policing.

Hypothesis 1: Greater awareness among general duties patrol officers of the
predicted crime areas will measurably deter crime.

It may be that simply making the general duties patrol officers in a police district
aware of the predicted crime areas during roll-call will be sufficient to increase the
amount of time they spend in the areas, leading to potential offenders being deterred
from committing crime during that tour of duty, thereby resulting in measurable crime
reduction. During this experiment, the relevant shift officers were made aware of the
predicted crime areas during roll-call at the start of their tour of duty.

Hypothesis 2: A dedicated uniform patrol attendance in predicted crime areas will
increase visible police presence sufficiently in the local area to deter crime.

The main difference between this and the first hypothesis is in the dosage, focus, and
quality of the patrol intervention. In Hypothesis 1, any additional patrol in the predicted
areas stems from patrol officers assigned to response policing in the district paying
additional attention to the predicted crime areas during the time when they are not
assigned to response policing activities. In this hypothesis (2), the awareness model is
supplemented by reassigning one marked patrol vehicle to focus specifically on the
predicted crime areas to the exclusion of most other police work, increasing treatment
dosage.

Hypothesis 3: Dedicated plain-clothes units in unmarked patrol vehicles in predicted
crime areas will increase police presence sufficiently in the local area to reduce crime.

Uniform marked police cars are a deliberately obvious police presence linked to a
general deterrence mechanism. Rather than deter crime through visible presence
(Hypothesis 2), it may be possible to reduce crime through focused surveillance. The
use of a (plain-clothes) unmarked police vehicle provides officers with greater oppor-
tunity to observe criminal activity surreptitiously, effect an intervention, and theoreti-
cally reduce crime through a specific deterrence mechanism.

Hypothesis 4: The previously described interventions will cause temporal crime
displacement.
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For the current experiment, each predicted crime estimate is valid for an 8-h shift,
which leaves up to 16 h before the next experimental treatment period. Because each
treatment district reverts to a business-as-usual state after eight treatment hours, it is
possible to establish if there is a detectable increase in offenses during a subsequent
nonexperimental time block, which would suggest temporal crime displacement
(Bowers and Johnson 2003). Alternatively, there might be a reduction in crime,
suggestive of a temporal diffusion of benefits from the intervention (Weisburd and
Green 1995).

Study setting

With 1.5 million residents, Philadelphia is the sixth largest city in the country. Census
population data4 as of July 2016 estimate that 45% of the city is white, 44% black, and
14% report being Hispanic or Latino. One quarter of the city has a bachelor’s degree or
higher, and a quarter live in poverty. In the year the study commenced (2015), the city
had a homicide rate of 17.8 and a violent crime rate of 1029 per 100,000 population,
compared to national rates of 4.9 and 383, respectively.5

Research design

Experimental design and participants

The Philadelphia Police Department comprises 22 geographic police districts. One of
these districts is the city’s international airport. In each iteration (the property crime
phase and the violent crime phase), the airport and the lowest crime district for that
phase were dropped from the experiment (district 7 for the property crime phase and
district 5 for the violent crime phase). The remaining 20 were randomly assigned to one
of four experimental conditions using block randomization with a 1:1:1:1 allocation
ratio. These conditions were (1) a control condition, with a business-as-usual patrol
strategy; (2) an awareness condition where officers were made aware of the treatment
areas at roll-call and asked to concentrate there when able, congruent with Hypothesis
1; (3) an awareness model treatment enhanced with a dedicated marked patrol car and
uniformed officers to exclusively patrol the treatment areas consistent with Hypothesis
2; and (4) an awareness model treatment supplemented with dedicated officers and an
unmarked vehicle to exclusively patrol the treatment areas, as per Hypothesis 3. Areas
were patrolled for 8-h-a-day, for two 3-month periods (one for property crime and one
for violence).

Prediction algorithm

Although HunchLab was sold to ShotSpotter® in 2018 (and rebranded as
ShotSpotter® Missions™), it originated as a web-based predictive policing system

4 Source: https://www.census.gov/quickfacts/fact/table/philadelphiacountypennsylvania/PST045216
5 Source: FBI Crime in the US, Table 8 (Offenses known to Law Enforcement by City) and Table 2 (“Crime in
the United States, by Community Type, 2015).
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designed by Philadelphia-based Azavea, Inc. This section draws extensively on docu-
mentation received from Azavea and conversations with Azavea employees.

The crime prediction algorithm (Azavea 2014) uses machine learning techniques
that incorporate components of risk terrain modeling (Caplan et al. 2011), near repeats
(Ratcliffe and Rengert 2008), collective efficacy (Sampson 2012), and self-exciting
point processes (see Mohler et al. 2011). The software can accept a variety of available
data sources, based on data availability. During the Philadelphia experiment, data came
from the 2013 release of the American Community Survey data, Philadelphia’s Open
Street Map, the Philadelphia Zoning Authority, and the Philadelphia Police Depart-
ment. HunchLab can make use of the following variables to generate predicted crime
grid cells6:

1. Baseline crime levels (historic crime levels measured over the preceding 28, 56, 84,
112, 168, and 364 days).

2. Near repeat patterns (crime trends over the last 3-, 7-, and 14-day periods).
3. Risk terrain modeling (elevation; zoning and water area coverage; density of

hospitals, fire departments, transportation points such as bus stops and subway
entrances, and schools; distance to the closest bicycle network, hospital, fire
department, road, water areas, zoning, and schools).

4. Sociodemographic indicators (median household income, percent households with
no income, mean household size, housing density, population density, median rent,
percent rented houses, percent vacant houses, density of vehicles, median popula-
tion age).

5. Guardianship was measured using proximity to and density of nearby police
stations.

6. Target availability was reflected in various indicators including housing density,
population density, and density of vehicles.

7. Temporal cycles (day of the week, day of the month, week of year, month of the
year, police shift).

8. Recurring temporal events (no recurring events such as sporting events or holidays
were used during the experiment).

9. Weather (weather variables such as temperature or precipitation were not used
during the experiment).

Like a number of other predictive systems, the likely crime locations in HunchLab are
defined by grid cells that are 500 ft × 500 ft in size, laid over the city in a fishnet
pattern. The algorithm first uses a gradient boosting machine predicting whether a
crime will occur in each grid cell. This process relies on several years of historical
crime data, which are separated into training versus testing datasets. A portion of the
training dataset is fed into a decision tree making a prediction about whether or not a
crime will occur in a particular location (grid cell). Next, the data feed another decision

6 While this list includes the variables that were used as inputs to the models, it is important to note that
HunchLab used a different model for each crime type. Log files that identified which variables were relevant
in predicting each crime type were no longer available at the time this manuscript was drafted due to the
transfer of ownership from Azavea to ShotSpotter; therefore, it is unknown how important each of these
variables were in generating the forecast for each crime type.
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tree that corrects incorrect predictions from the first model. This process continues
several hundred times until the model has “learned” how to correct its prior mistakes.

Cross-validation methods prevent the gradient boosting machine process from
overfitting the training data. Once the appropriate number of training iterations is
selected, smoothing functions available through generalized additive models calibrate
the scores that are created from the gradient boosting machines. The predicted out-
comes are converted into expected crime counts for each 500 ft × 500 ft cell. HunchLab
then selects the cells with the highest expected counts and displays them as likely crime
grid cells on a map, called “mission grids.”

In its normal operation mode, HunchLab will identify the mission grids within a
jurisdiction; however, for the experiment, we constrained the software in two ways,
both of which reduced its accuracy. First, we required the software to forecast three 500
ft × 500 ft mission grids for each day for each police district—regardless of the
distribution of the crime problem. This meant that it had to forecast mission grids in
low crime police districts, and it could not overpopulate higher crime districts with
more than three mission grids. Second, the software introduced a slight randomization
component to reduce the possibility that the same mission grids were selected for
several days in a row. This was because the HunchLab team had implemented the
software in another city and received feedback that continually attending the same
location had become boring for officers. To try to reduce the boredom factor and
possibly suffer a concomitant loss of treatment fidelity, we agreed to a minor random-
ization of the highest prediction mission grids within districts.

From mission grids to treatment areas as the unit of analysis

Our original plan was to use the three mission grids in each district as the spatial unit of
analysis; however, once we conducted fieldwork (described later in this article and further in
the online), it became clear that this did not reflect the policing occurring on the ground.
During the experiment, researchers accompanied officers on just over 100 dedicated car
assignment patrols (marked and unmarked cars). It was clear from these observations that it
was either impossible or unrealistic for officers to patrol themission grids exclusively. A 500
ft × 500 ft mission grid constitutes not much more than a city block in Philadelphia, given
the mean street block length is more than 400 ft. Many of the city’s blocks are one-way
streets. As a result, officers had to drive through the streets outside of the mission grids in
order to police each mission grid. Furthermore, some of the mission grids were contiguous
or closely located to other mission grids. For example, in Fig. 1, two mission grids (shaded)
are close to one another meaning officers would likely traverse between the mission grids
frequently.

The maps presented to the officers showed only the three mission grids. However,
because the officers had to navigate the surrounding streets to return to the mission
grids, we estimated that any intervention effect would likely also affect the grid cells
immediately surrounding the (HunchLab-selected) mission grids. These contiguous
cells—first-order queen contiguous cells adjacent to the mission grids—were therefore
included in our analysis of the experimental outcomes. These form a more realistic
evaluation focus than just the three mission grids per district each day. Because the
mission grids were sometimes contiguous or near each other, the contiguous cells
sometimes overlapped. In other words, a contiguous cell for one mission grid could

J. H. Ratcliffe et al.22



also be a contiguous cell for another mission grid. This can be seen in Fig. 1 where two
contiguous cells (labeled A) are adjacent to both mission grids in the picture.

Because of this inability to distinguish contiguous areas that were unique to specific
mission grids, the unit of analysis in this experiment is the combination of all three mission
grids in each district on each day, as well as their respective contiguous cells. We term this
combined spatial unit the “treatment area.” Because each day the experiment operated for
one 8-h shift, we can explain the unit of analysis thus: Each day, within each district assigned
to a treatment condition within the experiment, the district’s “treatment area” comprises the
three mission grids as well as the contiguous cells adjacent to the mission grids for the
relevant 8-h period. There is therefore one treatment area per intervention district per day.
Given low crime counts and associated concerns, outlined in the online Appendix, we
aggregated up to weekly crime counts for each district. Crime counts are therefore organized
into treatment area by week within districts. With 14 weeks and 20 districts, we have 280
“district–weeks” per experimental phase as the unit of analysis used in this study.

Algorithm accuracy

Although (as we stated earlier) estimating the efficacy of the software program is not the
primary goal of this study, we are able to report some indication of the software’s capacity to
identify appropriate treatment areas in the districts. We report the prediction accuracy index
(PAI), a ratio measure comprising a numerator of the proportion of crime events falling
within the mission grids for each district and a denominator of the percentage of the relevant
police district covered by the mission grids (Chainey et al. 2008; Eck et al. 2017; Flaxman
et al. 2019; Tompson and Townsley 2010). Note the following two features about our
deployment of the PAI. First, while Drawve (2016) demonstrated that the PAI is more suited
to comparisons between techniques or parameter choices, we report PAI mean and standard
deviations for the five control districts across the property crime phases. We do not report

Fig. 1 Example street layout with two mission grids and contiguous grid cells surrounding each mission grid.
Cells contiguous to both mission grids are labeled A
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these values for treatment districts due to possible contamination resulting from operational
activities. Second, althoughwe use treatment areas formuch of the analysis in this article, we
report the PAI values for mission grids only. This is a more accurate indication of the
predictive algorithm’s abilities and more reflective of the task it was asked to perform.

As per Chainey et al. (2008), the PAI is calculated thus:

PAI ¼
n
N

� �
*100

a
A

� �
*100

ð1Þ

Where n is the number of crimes that occurred in the mission grids, N is the total
number of crimes in the district on each given day, a is the area of the mission grids,
and A is the total area of the police district under examination. We also report the
prediction efficiency index (PEI) which indicates how well a forecasting algorithm
performs compared to the best it could have done, given the available crime and
distribution (Lee and Eck 2017), as shown:

PEI ¼
n
N
=
a
A

n*

N
=
a
A

ð2Þ

Where n* is the maximum number of crimes within the district that are forecastable
within the area predicted (“a,” or in our case, three mission grids), and other variables
are as per Eq. (1).

Interventions

In “awareness” districts, officers were informed at roll-call of the mission grids for that shift
and were asked to pay attention to the areas when they were able, within the constraints of
their operational duties (consistent with Hypothesis 1). Perry et al. (2013) note with specific
regard to predictive policing that “situational awareness among officers and staff is a critical
part of any intervention plan” (p. xviii, emphasis in original). We did not impose any
requirement to pay additional attention to the mission grids, nor did we dictate any order of
attention or other constraints.

In “marked” car districts, in addition to having officers at roll-call aware of the mission
grids, two (though occasionally one) officers were assigned to a single marked vehicle
creating a dedicated patrol for themission grids (Hypothesis 2). This patrol was not assigned
calls for service or other operational roles. In “unmarked” car districts, the operational
implementation was the same as in marked car districts with the exception that in these
districts the officers always used an unmarked vehicle and were often dressed in plain
clothes as well (Hypothesis 3).

For the marked and unmarked car districts, officers were instructed to remain in the
three mission grids as much as possible and to move between them as necessary during
the tour of duty. The instructions to officers did not dictate any particular order of
attendance to the three mission grids or specify for how long or how frequently officers
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attended each mission grid. The officers were instructed to concentrate on the mission
grids, to patrol each of the mission grids throughout the shift, and to respond to calls for
service in their mission grids. They were permitted to leave this patrol pattern to backup
other officers in the district if they asked for assistance. Because the city’s police cars
were not fitted with automatic vehicle location (AVL) software or devices at the time of
the experiment, we are unable to measure the treatment fidelity precisely; however, as
explained in a following section, we are able to provide an estimate of fidelity based on
field observations.

In the five “control” districts, personnel did not have access to the crime prediction
software and continued policing as usual.

The property crime phase ran for 90 days from June 1, 2015, through August 25,
2015, 8 a.m. to 4 p.m. daily. A break was scheduled between the property and violent
crime phases of the experiment for two reasons: (1) to allow the police department to
prepare for, and recover from, the visit of Pope Francis to Philadelphia in late
September 2015; and (2) to allow crime patterns to return to normalcy for the districts.
This was estimated to be more than necessary given the short half-life of successes
associated with hot spot policing interventions (for example, see Sorg et al. 2013). The
study resumed on November 1, 2015, for the violent crime phase of the experiment
which ran for 92 days through January 31, 2016, 6 p.m. to 2 a.m. daily. District
assignments were re-randomized for the violence phase. Both phases spanned 14
weeks.

We disseminated information regarding the experiment as follows: Deputy
Police Commissioner Kevin Bethel (an author on this article and responsible
for patrol policing at the time) held a command briefing (that also featured the
lead academic researcher and primary author of this article) for all available mid-
level and senior district-level leaders. Instructional information also was sent to
each district. Two short instructional videos were made available to both crime
analysts responsible for accessing the crime predictions and personnel assigned
to marked and unmarked cars. Finally, the research and analysis section at police
headquarters assigned a senior analyst to the project, and he spent considerable
time on outreach and project education.

Outcomes and data collection

The research design incorporates various strands. As stated earlier, we report on metrics
examining the software predictive efficacy. As a generalized indication of treatment
fidelity, we also chart aggregate time usage of the dedicated police cars based on trained
observers conducting 101 ride-alongs in the back of cars assigned to either the marked
or unmarked car condition. Details of the training and data collection for the field
observations are included in the online Appendix. Finally, we report outcome results for
property crime and violent crime.

All crime data came from the police department’s geolocated incident data-
base. For the property crime phase, the following UCR part 1 property crime
counts were included in the property crime analysis: residential and commercial
burglary, theft from, auto and stolen vehicles. For the violent crime phase, the
following UCR part 1 crimes were included: homicide, rape, robbery, and
aggravated assault.
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Randomization

Blocked experimental designs have been around for roughly a century and are gener-
ally credited to statistician R. A. Fisher (Box 1980; Fisher 1935). Criminal justice
researchers using spatial units of analysis—like police districts, drug markets, or hot
spots—have been drawn to block randomization for two reasons. First, it elevates the
likelihood that random assignment, even with small numbers of spatial units, will
achieve initial probabilistic equivalence across treatment groups, or across treatment
and control groups. Second, block randomized designs may improve statistical power
(Gill and Weisburd 2013). We blocked on a weighted count of three variables: SES
index, percent population white non-Hispanic, and crime gravity score.

We created the SES index from four census variables reflecting households reporting
income less than US$20,000 (reversed), households reporting income greater than
US$50,000, median house value, and median household income. The online Appendix
has more information about this process.

Crime gravity scores are a measure of crime harm. Constructing crime harm levels
involves, in part, weighting crime occurrences by seriousness (Ignatans and Pease
2016; Ratcliffe 2015a, b; Sherman 2007; Sherman et al. 2016). In our case, every
crime incident over a 3-year period was weighted by a gravity score derived from the
Pennsylvania Sentencing Guidelines. We weighted recent crime more heavily than
older crime events. To create one stratification variable, each district’s ranks on the
relevant variables (SES index [reversed], percent population white non-Hispanic [re-
versed], crime gravity) were summed, counting the crime gravity rank twice for greater
prominence. Districts were then ordered by this (reversed) summed rank variable. This
was conducted independently for property crime and violent crime.

Along with the airport district, the district for each experiment phase with the highest
summed rank (on a reversed seriousness scale) was excluded. The remaining ordered
20 districts were separated into five blocks of four districts each. This resulted in one
randomly selected awareness, marked, unmarked, and control district within each block
of four districts (again, see the online Appendix for more details).

Concealment and blinding

The prediction software is web-based and required a login and password. This permitted
electronically blocking the control districts in each experimental phase from accessing the
software platform. We were not able to conceal the existence of the experiment across the
police department. Indeed, to achieve buy-in, it had been widely discussed; however, only
a few individuals had access to the logins for each district and there is no evidence of
control district personnel attempting to access crime predictions for their district.

Field observations

A total of eight graduate research assistants and primary investigators were deployed as
field researchers to collect observations during selected ride-alongs with officers to
monitor treatment integrity. The observation shifts were determined via random assign-
ment for both the property crime and violent crime phases of the experiment. Data
captured by field researchers helped to produce a more holistic view of the

J. H. Ratcliffe et al.26



implementation challenges faced by the department (Ratcliffe et al. in press), echoing
Greene’s (2014) call to explore the process concerns and contextual dynamics of innova-
tion in policing. Field observers completed a one-page field observation form during each
ride-along, noting where the officers spent the majority of their time for 32 × 15-min
blocks during the 8-h experimental treatment phases. For each 15-min period, the observer
noted the dominant activity of the assigned vehicle from one of eight possible conditions:
at station, car outside grids, car inside grids, in grid talkingwith citizens, on break, incident
within the grid, incident responded to outside the grid, and other (see the Appendix for the
form used). Prior to the beginning of the experiment, observers discussed potential
questions and themes relevant to the ride-alongs at a training session. We conducted 79
observations for the property crime phase and 22 for the violent crime phase. The reason
for this imbalance is explained in the online Appendix.

Describing daily crime patterns

Before moving to statistical models of district–week crime occurrence in treatment
areas, we describe daily district crime patterns in each of the control districts.

As explained earlier, we examined outcomes for treatment areas per district per day
(a reminder that a treatment area is the three mission grids plus their contiguous cells).
Even when we enhance the mission grids to include the contiguous cells into a
combined treatment area for a police district, we are still dealing with small geographic
areas in an 8-h shift. As such, there were many days with either no crimes reported in
the treatment area during the shift, or no crimes reported in the entire district during a
shift. This constraint particularly hampered the violent crime phase.

As can be seen in Table 1 for the property crime phase, a control district only had a
property crime during the 8-h experimental time period about 60% of the time. About
40% of the time, there were no offenses for the software to predict, even though the
experimental design required the software to predict three mission grids per district per
day. On average, the treatment area predicted was about 7% of the total area of the
district, though with considerable variation. Note that in the district labeled D, the
treatment area averaged about 13% of the district, but in district E, the treatment area
was on average less than 3%. Overall, the software—which was constrained to meet the
terms of the experiment—predicted about 14% of the possible crimes, using an area of
about 7% of the districts. Note that in the block randomization process, districts with

Table 1 Crime during the 8-h treatment shift for control districts during the property crime phase

District Days with crime in the district
(max. possible = 90)

Total crimes
in district

Crimes within
treatment area

Mean area of district for
treatment area (%)

A 61 (67.7%) 127 11 (8.6%) 5.1

B 46 (51.1%) 64 12 (18.7%) 6.1

C 74 (82.2%) 157 22 (14%) 5.7

D 59 (65.5%) 92 15 (16.3%) 12.9

E 34 (37.7%) 49 8 (16.3%) 2.6

Total 274 (60.1%) 489 68 (13.9%) 6.8
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generally more crime are A in the property phase and F in the violence phase, and
lower crime districts are E and J.

For the violent crime phase, the counts are all lower (Table 2). A district could only
expect to experience a violent crime during the experimental 8-h window about 30% of
the time. The software predicted about 14% of these, using an area of about 5% of a
district.

Intention to treat

Because crimes reported during the entire 8-h shift are included in the treatment period,
even though officers were not always actively patrolling during the entire time (see Fig.
2 and Fig. 3), the approach here is tantamount to an “intention-to-treat” analysis. This is
the best way to “obtain an unbiased estimate of the effect of selecting one treatment
over another” (Detry and Lewis 2014, p. 85) in a randomized control trial. Should a
police department at some point wish to instigate a predictive policing approach, it is
more reflective of the operational realities they are likely to encounter.

Statistical method

We used mixed effects models, with weeks (n = 14) nested within districts (n = 20),
estimating full Bayesian models with Markov chain Monte Carlo (MCMC) estimation
(Gelman et al. 2003; Gilks et al. 1996). The case for using full Bayesian estimation is
based on working with population data and our interest in what happened with these
specific data. We are not interested in treating the data as a sample and making
inferences back to unobserved population data. Confidence intervals around parameters
obtained from a non-Bayesian statistical model would be making that type of inference;
such resultant confidence intervals would not apply here given the data examined. The
Bayesian assumptions, by contrast, capture exactly what we seek. With these data and
these assumed prior distributions, these models reveal the best guess for these specific
impacts (b weights and the 2.5th percentile and 97.5th percentile of those estimates). To
put this more technically: “A primary motivation for believing Bayesian thinking
important is that it facilitates a common-sense interpretation of statistical conclusions.
For instance, a Bayesian (probability) interval for an unknown quantity of interest can

Table 2 Crime during the 8-h treatment shift for control districts during violent crime phase

District Days with crime in the district
(max. possible = 92)

Total crimes
in district

Crimes within
treatment area

Mean area of district for
treatment area (%)

F 49 (53.2%) 68 7 (10.3%) 5.8

G 32 (24.4%) 40 4 (10%) 5.9

H 19 (20.6%) 20 4 (20%) 7.4

I 27 (29.3%) 37 8 (21.6%) 2.6

J 10 (10.8%) 11 1 (9.1%) 1.4

Total 137 (29.8%) 176 24 (13.6%) 5.1
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be directly regarded as having a high probability of containing the unknown quantity, in
contrast to a frequentist (confidence) interval, which may strictly be interpreted only in
relation to a sequence of similar inferences that might be made in repeated practice”
(Gelman et al. 2003, pp. 3–4).

Within this statistical approach, models were estimated with MLwiN (Browne
2012). We ran logit models for a crime presence variable (crime presence vs. absence
of crime) and negative binomial models for a crime counts variable. For all models,
MCMC estimation was conducted with chains ranging from 50,000 to 200,000. We
only report results from estimation with the largest number of chains estimated, but
stability was observed throughout.

The exposure variable was the total number of grid cells in all of the
treatment areas across the entire week. For the property crime experiment, they
ranged from 40 to 189 (mean 133.33). For the violent crime experiment, they
ranged from 39 to 204 (mean 134.05). Exposure was modeled in various ways
with comparable results, so we report the results that are easiest to understand
with the mean-centered grid cell count as a predictor. We first estimated a null
model, with random intercepts at the district level and the exposure variable. A
second model followed with the dummy treatment predictors added to the
model with the exposure variable. These three separate binary dummy variables
represented each of the three treatment conditions—awareness, unmarked pa-
trol, and marked patrol. District–weeks in the control districts represented the
reference string. We examined various diagnostics, reported in the online
Appendix.

Fig. 2 Main car activity for 15-min blocks for marked and unmarked cars in the property crime experimental
phase (8 a.m. to 4 p.m., n = 79)
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Results

Software efficacy

Given the operational requirement to predict into an 8-h window, even in low crime
districts, it is unsurprising that many control districts did not experience a crime event
during the experimental shift (8 a.m. to 4 p.m. for property crime and 6 p.m. to 2 a.m.
for violence) as shown in Tables 1 and 2. Since the PAI uses the total crime during the
shift as a denominator, we were unable to calculate the PAI in these zero-crime
instances. For the calculations, we therefore exclude days when a district did not
experience a crime. Furthermore, the district-level violent crime counts were too low
to provide reliable measures across all of the districts (as seen in Table 2, and recall that
the table shows values for entire treatment areas, not just the mission grids). We
therefore report the PAI and PEI mean and standard deviation for the 90-day property
crime phase for the five control district mission grids7 at the mission grid level in
Table 3.

Implementation fidelity

In total, there were 101 individual field note entries completed through both phases of
the experiment, with 79 conducted with the property crime phase, and the remaining 22

7 At the request of the police department, we have anonymized the district location information. Therefore, A–
E may, or may not, include districts also identified as F–J.

Fig. 3 Main car activity for 15-min blocks for marked and unmarked cars in the violent crime experimental
phase (6 p.m. to 2 a.m., n = 22)
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with the violent crime phase (more information in the online Appendix). The following
aggregate charts represent all observed shifts for both marked and unmarked cars. As
can be seen in Fig. 2 and Fig. 3, officers patrolled the treatment areas to varying levels
throughout the shift, with officers getting to the treatment areas earlier for the 8 a.m. to
4 p.m. property crime phases, but officers patrolling treatment areas more extensively
later in the shift for the violent crime phase (6 p.m. to 2 a.m.). At least 50% saturation of
treatment areas was achieved for 3.5 and 3.75 h, respectively, for property and violent
crime phases.

Property crime phase results

Prior to adding predictors, we found that the treatment areas in a typical district in a
typical week would experience one or more property crimes about 60% of the time
(Table 1 and see the online Appendix). Table 4 shows the impacts of the three treatment
conditions in contrast with the control condition.

The marked patrol car condition noticeably lowered the chances of a property
crime occurring during the treatment shift. In a marked condition district with a
typically-sized treatment area, the expected odds of one or more reported property
crimes occurring during a shift versus not occurring was 55% lower (mean OR =
0.45) compared to the control district–weeks. This translated to an expected 49.5%
of district–weeks with a typical count of cells in the treatment area having one or
more reported property crimes in this condition8. This represents an expected
27.9% reduction in the presence of property crime during treatment shifts in
marked condition districts relative to control districts with typically-sized treat-
ment areas. Despite this sizable benefit, the coefficient was not statistically
significant (two-tailed p = 0.17).

The two other treatment conditions had smaller effects. In the typical aware-
ness district (compared to the control condition), the expected odds of any
property crime occurring were about 7% lower relative to typical control
condition district–weeks. In the unmarked condition, the corresponding expected
odds were about 2% higher.

These “crime versus not crime” (crime presence) results were mimicked when
we explored the effect of the treatment on specific crime counts. Table 5 shows

Table 3 PAI mean and standard deviation for the control district mission grids during the property crime
phase

District Mean PAI PAI std. dev. Mean PEI PEI std. dev.

A 12.01 30.11 0.18 0.43

B 17.98 34.12 0.25 0.43

C 18.30 35.50 0.33 0.63

D 8.19 16.40 0.27 0.50

E 25.21 51.37 0.24 0.43

8 The expected odds = exp((log odds for control district (constant)) + (coefficient for marked condition)), then
calculating the expected proportion. The expected proportion is derived as [odds ratio / (1 + odds ratio)]
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the property–crime count model with the treatment conditions included. In the
marked districts as compared to the control districts, expected property crime
counts in the treatment areas were 31% lower (OR = 0.69). Although sizable, this
treatment benefit did not attain conventional levels of statistical significance (two-
tailed p = 0.208).

Violent crime phase results

Compared to property crime in Philadelphia, violent crime proves an even rarer
event at the microgrid scale. Prior to adding predictors, we found that the
treatment area in a typical district in a typical week would experience one or
more violent crimes only about 29% of the time (Table 2 and see the online
Appendix). Table 6 shows the impacts of the three treatment conditions in contrast
with the control condition.

Table 4 Property crime presence/absence during treatment shift: treatment condition logit model MCMC
results

Mean b weight Mean OR

Fixed portion of model Mean OR Mean b SD of b p 95% LCL 95% UCL 95% LCL 95% UCL

Constant (control) 2.185 0.782 0.614 0.093 − 0.427 2.008 0.652 7.449

N of cells (centered) 1.017 0.017 0.005 < 0.001 0.008 0.027 1.008 1.027

Awareness 0.928 − 0.075 0.864 0.459 − 1.798 1.666 0.166 5.292

Unmarked 1.025 0.025 0.892 0.489 − 1.759 1.796 0.172 6.024

Marked 0.448 − 0.802 0.862 0.166 − 2.558 0.887 0.077 2.429

Random portion of model Mean SD 95% LCL 95% UCL

District level variation 1.430 0.871 0.382 3.632

N = 280 district–weeks

Table 5 Property crime count during treatment shift: treatment condition MCMC results

Mean b weight Mean IRR

Fixed portion of model Mean IRR Mean b SD of b p 95% LCL 95% UCL 95% LCL 95% UCL

Constant (control) 0.933 − 0.069 0.331 0.411 − 0.731 0.603 0.482 1.828

N of cells (centered) 1.010 0.010 0.002 < 0.001 0.006 0.015 1.006 1.015

Awareness 1.112 0.106 0.461 0.398 − 0.838 1.012 0.432 2.752

Unmarked 1.128 0.121 0.476 0.388 − 0.854 1.044 0.426 2.841

Marked 0.694 − 0.366 0.470 0.208 − 1.303 0.574 0.272 1.775

Random portion of model Mean SD

District level variation 0.460 0.246 0.161 1.088

Overdispersion 0.036 0.040 0.002 0.148

N = 280 district–weeks
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Relative to the control districts, the chances of violent crime in a treatment area were
somewhat higher in the marked districts (expected 31.5% of district weeks with one or
more violent crimes, p = 0.267) and in the awareness districts (expected 34.7% of
district weeks with one or more violent crimes, p = 0.191). The chances were slightly
lower in the unmarked districts (expected 23.7% with one or more violent crimes, p =
0.468).

We see similar patterns when examining the crime count models rather than
the “crime present versus no crime present” model. Relative to control districts,
expected counts were nonsignificantly higher in the awareness districts (IRR =
1.56; two-tailed p = 0.15) and in the marked districts (IRR equals 1.24; two-
tailed p = 0.31). Expected counts in unmarked districts were closely comparable
to the control districts (IRR = 1.04). The full violent crime count models results
appear in the online Appendix.

Posttreatment shift effects

Per Hypothesis 4, we did examine the potential temporal displacement and
temporal diffusion of benefits in the 8-h period after a treatment shift. To manage
the size of this article, we report these results fully in the online Appendix and
provide only a summary here. For property crime, we did find a temporally lagged
benefit of the marked car treatment condition, resulting in an expected 39.7%
reduction in posttreatment shifts with one or more reported property crimes.
Again, however, this benefit did not achieve conventional levels of statistical
significance (two-tailed p = 0.072). Other treatment conditions saw smaller ef-
fects. We caution that property crime was generally lower in the 8 h (4 p.m.–
midnight) after the treatment shift (8 a.m.–4 p.m.).

Violent crime was scarce during the 8 h in the shift after the treatment window
(from 2 a.m. to 10 a.m.). The expected violent crime count in treatment areas was
0.17 per district week across all 20 districts. Expected counts increased nonsig-
nificantly in the awareness and marked car districts by upwards of 70% and in the
unmarked car districts by 23%. Nevertheless, while these percentage changes can
seem impressive, they related to minute amounts of crime, so we therefore caution

Table 6 Violent crime presence/absence during treatment shift: treatment condition MCMC results

Mean b Mean OR

Fixed portion of model Mean OR Mean b SD of b p 95% LCL 95% UCL 95% LCL 95% UCL

Constant (control) 0.327 − 1.118 0.427 0.005 − 2.005 − 0.316 0.135 0.729

N of cells (centered) 1.008 0.008 0.005 0.048 − 0.001 0.018 0.999 1.019

Awareness 1.624 0.485 0.591 0.191 − 0.651 1.701 0.522 5.481

Unmarked 0.952 − 0.050 0.609 0.468 − 1.284 1.139 0.277 3.124

Marked 1.404 0.339 0.589 0.267 − 0.839 1.508 0.432 4.519

Random portion of model Mean SD

District level variation 0.467 0.444 0.003 1.598

N = 280 district–weeks
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that any differences can appear exaggerated (see the online Appendix for more
details).

Discussion

Predicting crime to an 8-h window in a few small mission grids is inherently challeng-
ing, especially when focusing on violent crime. At this point, given a grid cell is little
more than a single city block, we may be operating below the current limit of analytical
capacity, data accuracy, data availability, and human stochastics. Over the course of a
week, the average district would have a 63% chance of there being one or more
property crimes in the treatment area during treatment shifts, but only about a 29%
chance of one or more violent offenses in those locations for those shifts. We caution
that at these volumes, any differences tend to appear exaggerated when expressed as
percentage changes (as we do in this article). The floor effects (see the online
Appendix) tend to explain the absence of statistically significant results generally.

With these caveats in mind, the substantive (not statistical) results showed a 31%
reduction in expected reported crime counts when marked cars were deployed to
property crime districts (28% reduction in presence when examining crime presence
of crime versus absence). In the 8 h after the property phase shift, we found a 40%
reduction in expected property crime occurrence (46% with count models) from 4 p.m.
to midnight. The other experimental conditions did not demonstrate any remarkable
results.

For property crime, we therefore do not find evidence to support Hypothesis 1:
Greater awareness among general duties patrol officers of the predicted crime areas
will measurably deter crime. However, we did find some modest evidence to support
Hypothesis 2: A dedicated uniform patrol attendance in predictive areas will increase
visible police presence sufficiently in the local area to deter crime.We stress modest in
terms of evidence, because a combination of either floor effects or weak experimental
effects meant this change was not statistically significant.

Because we did not find a meaningful effect for the unmarked condition, we reject,
for the property phase, Hypothesis 3: Dedicated plain-clothes units in unmarked patrol
vehicles will increase police presence sufficiently to reduce crime. Finally, Hypothesis 4
predicted that the previously described interventions will cause temporal displacement.
In the 8 h after the property treatment, the marked car districts were associated with a
diffusion of benefits, such that expected crime counts were 40–46% lower depending
on whether the logit or count models were considered.

Violent crime findings were hampered by low volumes overall and a general scarcity
of violence in the treatment areas during the study frame (which may come as a
welcome surprise to city residents). Descriptively speaking, relative to control districts,
increased crime counts were experienced in awareness districts (56%) and marked car
districts (24%) and little change in unmarked car districts (4% increase). In the 8 h
posttreatment, we find evidence of nonsignificant increased crime counts in all three
treatment conditions (see the online Appendix). We do not find support for any of the
first three hypotheses, and there is no apparent theoretical explanation for these
increases. Again, these changes should be interpreted with respect to the extremely
low underlying raw counts and as such should be interpreted with considerable caution.
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Limitations

Predicting crime and the tactics used in the subsequent predicted areas are arguably two
distinct considerations. This experiment was not designed to explicitly evaluate the first
consideration; however, we do report a number of metrics for HunchLab as a crime
prediction tool. Different results would likely be observed using different software or
using HunchLab with different parameters. Furthermore, it is almost certainly the case
that the software will perform more effectively when released from the constraints
imposed by our experiment.

The intervention is evaluated here “as intended” and we present intention-to-treat
analyses. Inevitably, operational constraints prevented the police department from
achieving a complete implementation of the experimental treatments. Sometimes in
the car districts, officers made arrests and the police district was unable to spare
personnel to replace the operational crew for the remainder of the shift. Sometimes, a
vehicle broke down and a replacement was not available. If this is seen as a constraint,
we would argue that it is a constraint that reflects the reality of the policing environment
the world over.

We also note that property crime suffers from reporting inaccuracies since victims
are usually not present during the crime event. While techniques such as aoristic
analysis (Ratcliffe 2000; Ratcliffe and McCullagh 1998) can help, limitations with
Philadelphia Police data reporting precluded using this approach here. In lieu of this,
we were limited to using the time that the crime was reported to police.

Discussions with police personnel during field observations did raise the
possibility that some of the unmarked police cars got “burned.” That is, the
community became aware that unmarked cars were police vehicles. Police
officers suspected this was the case due to the frequency of the patrols in the
treatment areas as well as the make and model of the cars commonly used as
unmarked vehicles by the police department. If sufficient people became aware
that unmarked vehicles policed the treatment areas, this information would
likely transmit to potential offenders. As a result, this would negate any specific
deterrence effects; however, it would have a concomitant effect of increasing
general deterrence. The extent of this potential (though unanticipated) treatment
condition change is difficult to estimate. Nevertheless, in light of the experi-
mental constraint of driving around a small number of streets for extended
periods of time, it certainly cannot be ruled out. Given the notably different
property crime impacts for the marked as compared to the unmarked condition,
two possible conclusions exist. Either the cars were not “burned” and the
specific deterrence mechanism of unmarked cars was insufficient to affect the
crime rate, or the subsequent general deterrence mechanism from burned cars
was ineffective. Finally, a combination of burned and not burned may have
occurred throughout the experiment lessening any overall impact.

Perhaps one of the biggest limitations arises from crime infrequency at extremely
small spatial and temporal scales. The attendant constraints are sketched in the online
Appendix and elaborated elsewhere (Taylor and Ratcliffe 2019). Whether this adverse
statistical power impact of the geographic fine-tuning accompanying current predictive
policing efforts is inevitable, or can be counterbalanced in other ways, proves an
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interesting question (Taylor and Ratcliffe 2019). Researchers advocating microscale
interventions would do well to attend to these concerns.

Costs

Most vehicle-bound police personnel involved in the experiment were released from
general duties police units, as were the marked cars themselves. The unmarked vehicles
were normally assigned to covert units such as drug squad officers. As a result, the
police department incurred no direct financial costs. This does however represent a
realignment of one or two officers within each district during the specific 8-h shifts of
the experimental phases and a repurposing of the unmarked cars. As a result, some
reallocation of workload within the district will have been experienced. This may have
manifested as increased response times to calls for service outside of treatment areas. It
may have also affected crime in other areas of the district, for example due to the
removal of a vehicle from covert narcotics work. Future work may be able to explore
this issue further. The police department also assigned a centralized analyst (one of the
authors) to the experiment for much of his assigned work time. This will have affected
other crime and intelligence analysis activities.

Generalizability

As Weisburd and colleagues note, “police and scholars must ask not just ‘what the
strategy is’ that will be effective but also ‘how we gain enough dosage’ for such
strategies to have large-scale crime prevention impacts across the city” (Weisburd et al.
2015, p. 384). This experiment was designed in close collaboration with the PPD so
that the intervention conditions reflected realistic treatments that the police department
could sustain indefinitely. While external validity is ultimately an empirical question
(Taylor 1994, p. 164), our ad hoc discussions with police personnel from other
departments suggest that our experimental conditions reflect the likely manner by
which other police departments would implement a long-term predictive policing
strategy.

Interpretation

If predictive policing is, in essence, an application of microlevel hot spots policing, then
there is a need to consider explicitly the strategic translation of a place-specific
microlevel policing tactic up to a district-wide or city-level implementation (Sherman
et al. 2014). Reliably predicting crime for small grids comprising little more than a
single street block remains a monumental challenge for the nascent discipline of
predictive crime analysis; further, the vagaries of stochastic and dynamic
microlocations can play havoc with even the best predictions. As a result, we chose
to expand the analytical areas to more closely reflect the realities on the ground. Even
when expanding to treatment areas, we experienced floor effects, especially in terms of
violent crime counts. As such, we caution against interpreting the results purely in
terms of patterns of statistical significance.

One reviewer reasonably asked why we bother reporting the violent crime results at
all. Although the low violence counts likely negated any chance of discovering
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meaningful results, the policing field remains focused on tackling violent crime. We felt
there was value in exploring the violence question, even if we are only able to highlight
the significant challenges in both predicting and affecting this societal issue. The odds
ratio changes with regard to the property crime phase and the marked car units are a
little more substantial, again with the caveat that the numbers remain relatively small.

Overall, the quantitative results suggest that a dedicated and focused marked police
car working in a small area may reduce property crime by a substantial fraction;
however, participants and the community need to manage expectations about the
volume of crime prevented. Small microgrids will never generate a massive volume
of crime in a short time frame like an 8-h window; therefore, the raw numbers will
remain small. Police commanders should interpret these results carefully before decid-
ing if any costs in terms of using dedicated resources are offset by the potentially
limited gains to be earned from the sort of predictive policing strategy employed in this
experiment. Freeing any software product from the constraints we imposed will
improve matters, but it is unclear by how much and what further operation
implications there might be.

Recent related qualitative work suggests the value of visible deterrence for the
positive marked car results. When Summers and Rossmo (2019) provided over 130
offenders with a vignette featuring two police cars driving by in a short space of time,
63% said they would displace their offending to another time or place, and 23% said
they would give up for the day. The desistance/displacement results for marked patrol
cars were larger than any other security measure they tested.

Until now, there has been little available evidence regarding how best to use patrol
police officers beyond hot spots policing. Thus, while there are numerous caveats
expressed in this article, the property crime results are among the first positive robust
empirical findings derived from a randomized experiment of a tactic tied to a predictive
policing implementation. This experiment provides some operational insights for patrol
commanders.

This remains the result of just one experiment. Not only is there a vital need for more
research with the highest standards of scientific validity, such investigations also should
test deployments that are democratically acceptable, realistic, and operationally viable.
If the current enthusiasm for predictive policing is to develop into a mainstream
strategy, there is no point testing resource-intensive law enforcement strategies that
police departments cannot sustain on an ongoing basis. Moreover, questions about what
police should do in predicted crime areas remain central to progress. These will have to
be discussed and studied in an open and transparent manner. Predictive policing may
help law enforcement to be more targeted and precise, but for long-term effectiveness,
analytical solutions to crime problems must be developed alongside transparent and
democratically viable prevention mechanisms.
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